Remarks on a Temporal Intuitionistic Fuzzy Logic

Krassimir T. Atanassov*

Copyright © 1990, 2016 Krassimir T. Atanassov
Copyright © 2016 Int. J. Bioautomation. Reprinted with permission

How to cite:

In the memory of Acad. H. Hristov

Let \(p \) be a proposition and let \(V \) be a truth-value function, which juxtaposes to the proposition \(p \) and to the time-moment \(t \in T \) (\(T \) is a fixed set which we shall call “time-scale” and it is strictly oriented by the relation “\(<\)”) the ordered pair (c.f. [1]).

\[
V(p, t) = \langle \mu(p, t), \nu(p, t) \rangle
\]

Let

\[
T' = \{ t' \in T \text{ and } t' < t \}
\]

\[
T'' = \{ t'' \in T \text{ and } t'' > t \}
\]

We shall define for given \(p \) and \(t \) the operators

\[
P, F, H, G : [0, 1] \times [0, 1] \times T \to [0, 1] \times [0, 1] \times T,
\]

for which

\[
X(p, t) = X(\langle \mu(p, t), \nu(p, t) \rangle)
\]

for \(X \in \{ P, F, H, G \} \) and:

- \(V(P(p, t)) = \langle \mu(p, t'), \nu(p, t') \rangle \), where \(t' \in T' \) satisfies the conditions:

 (a) \(\mu(p, t') - \nu(p, t') = \max_{t* \in T} (\mu(p, t*) - \nu(p, t*)) \),

 (b) if there exist more than one such element of \(T' \), then \(t' \) is the maximal.

- \(V(F(p, t)) = \langle \mu(p, t''), \nu(p, t'') \rangle \), where \(t'' \in T'' \) satisfies the conditions:

 (a) \(\mu(p, t'') - \nu(p, t'') = \max_{t* \in T} (\mu(p, t*) - \nu(p, t*)) \),

 (b) if there exist more than one such element of \(T'' \), then \(t'' \) is the minimal.

* Current affiliation: Bioinformatics and Mathematical Modelling Department
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria, E-mail: krat@bas.bg
- $V(H(p, t)) = \langle \mu(p, t'), \nu(p, t') \rangle$, where $t' \in T'$ satisfies the conditions:
 (a) $\mu(p, t') - \nu(p, t') = \min_{t \in T'} (\mu(p, t) - \nu(p, t))$,
 (b) if there exist more than one such element of T', then t' is the maximal.

- $V(G(p, t)) = \langle \mu(p, t''), \nu(p, t'') \rangle$, where $t'' \in T''$ satisfies the conditions:
 (a) $\mu(p, t'') - \nu(p, t'') = \min_{t \in T''} (\mu(p, t) - \nu(p, t))$,
 (b) if there exist more than one such element of T'', then t'' is the minimal
 (see e.g. [2, 3]).

Theorem 1: For every proposition p and for every time moment t:

(a) $V(H(p, t)) = V(N(P(N(p)), t)))$,

(b) $V(G(p, t)) = V(N(F(N(p)), t)))$.

Proof:

(a) $V(N(F(N(p)), t))) = \langle \mu(p, t'), \nu(p, t') \rangle$

where t' is the maximal element of T' for which:

$$\nu(p, t') - \mu(p, t') = \max_{t \in T'} (\nu(p, t) - \mu(p, t)).$$

Therefore, t' is the maximal element of T' for which:

$$\mu(p, t') - \nu(p, t') = \min_{t \in T'} (\mu(p, t) - \nu(p, t)),$$

i.e.,

$$\langle \mu(p, t'), \nu(p, t') \rangle = V(H(p, t)).$$

(b) is proved analogically. \qed

Theorem 2: For every two propositions p and q, and for every time moment t:

(a) $H(p \supset q, t) \supset (P(p, t) \supset P(q, t))$,

(b) $G(p \supset q, t) \supset (F(p, t) \supset F(q, t))$,

(c) $N(P(N(p \supset q), t)) \supset (P(p, t) \supset P(q, t))$,

(d) $N(F(N(p \supset q), t)) \supset (F(p, t) \supset F(q, t))$.

are IFSs.

Proof:

(a) $V(H(p \supset q, t) \supset (P(p, t) \supset P(q, t))) =$

$$= H(\langle \max(\nu(p), \mu(q)), \min(\mu(p), \nu(q)), t) \rangle \supset \langle \mu(p, t_1), \nu(p, t_1) \rangle \supset \langle \mu(q, t_2), \nu(q, t_2) \rangle),$$

(\text{where t_1 and t_2 are both maximal elements of T' for which the maximums of $\mu(p, t_1) - \nu(p, t_1)$ and of $\mu(p, t_2) - \nu(p, t_2)$ are achieved})
If contradiction.

Let for every t' the maximal element of T' for which the maximum of $\max(p, t'), \mu(q, t')$ is achieved.

$$
= \langle \max(v(p, t'), \mu(q, t')), \min(\mu(p, t'), \nu(q, t')) \rangle
$$

(\text{where } t' \text{ is the maximal element of } T' \text{ for which the maximum of } \max(v(p, t'), \mu(q, t')) - \min(\mu(p, t'), \nu(q, t')) \text{ is achieved})

$$
= \langle \max(v(p, t_1), \mu(q, t_2)), \min(\mu(p, t_1), \nu(q, t_2)) \rangle,
$$

Then we consider the expression

$$a = \max(v(p, t_1), \mu(q, t_2)), \min(\mu(p, t_1), \nu(q, t_2)) - \min(\mu(p, t_1), \nu(q, t_2), \max(v(p, t'), \mu(q, t'))).$$

If there exist $t_2 \in T'$ for which $\mu(p, t_2) \geq v(q, t_2)$:

$$a \geq \mu(p, t_2) - v(q, t_2) \geq 0.
$$

Let for every $t_2 \in T'$: $\mu(p, t_2) < v(q, t_2)$. Then, if there exist $t_1 \in T'$ for which $v(p, t_1) \geq \mu(q, t_1)$:

$$a \geq v(p, t_1) - \mu(q, t_1) \geq 0.
$$

Let for every $t_1 \in T'$: $v(p, t_1) < \mu(q, t_1)$. Then, if there exist $t' \in T'$ for which $\min(\mu(p, t'), v(q, t')) \geq \max(v(p, t'), \mu(q, t'))$:

$$a \geq \min(\mu(p, t'), v(q, t')) - \max(v(p, t'), \mu(q, t')) \geq 0.
$$

Let for every $t' \in T'$:

$$\min(\mu(p, t'), v(q, t')) < \max(v(p, t'), \mu(q, t'))$$

and let $t_0 \in T'$. If $\mu(p, t_0) \leq v(q, t_0)$, then $v(p, t_0) \leq v(q, t_0)$ and $v(q, t_0) < \mu(q, t_0)$, which is a contradiction.

If $v(p, t_0) < \mu(q, t_0)$, then $\mu(p, t_0) < v(q, t_0)$ and $\mu(q, t_0) < v(q, t_0)$, which is a contradiction. Therefore (a) is valid.

(b)-(d) are proved analogically.

From the above definition, it follows the validity of:

Theorem 3: For every two propositions p and q, and for every time moment t:

(a) If $H(p, t)$ is an IFT, then $P(p, t)$ is an IFT;

(b) If $G(p, t)$ is an IFT, then $F(p, t)$ is an IFT;

From the equalities:

$$P(P(p, t), t) = P(p, t),$$

$$F(F(p, t), t) = F(p, t),$$

it follows the validity of:
Theorem 4: For every proposition p and for every time moment t:

(a) $P(P(p, t), t) \supset P(p, t)$

(b) $H(p, t) \supset H(H(p, t), t)$

are IFTs.

Let $W' = \{t' / t' \in T' \& t' \leq t\}$, $W'' = \{t'' / t'' \in T'' \& t'' \geq t\}$. The operators \overline{P}, \overline{H}, \overline{F} and \overline{G} are defined as the respective above, but for W' and W'' instead of T' and T''. For them the above assertions are valid also.

Theorem 5: For every two propositions p and q, and for every time moment t:

(a) If $\overline{H}(p, t)$ is an IFT, then $\overline{F}(p, t)$ and (p, t) are IFTs,

(b) If $\overline{G}(p, t)$ is an IFT, then $\overline{F}(p, t)$ and (p, t) are IFTs,

(c) If $\overline{H}(p, t) \& \overline{G}(p, t)$ is an IFT, then $\overline{P}(p, t) \lor (p, t) \lor \overline{F}(p, t)$ is an IFT,

(d) If $\overline{H}(p, t) \lor \overline{G}(p, t)$ is an IFT, then there exists $t^* \in T$ for which (p, t^*) is an IFT,

where (p, t) denotes the proposition p at the time-moment t.

References

Original references as presented in Preprint IM-MFAIS-1-90
Facsimiles

Cover page

Contents

Remark on a Temporal Intuitionistic Fuzzy Logic

Ivanov T. Abramov
Inst. for Microsystems, Latin Blvd., Plovdiv, Bulgaria

Let D be a proposition and let V be a truth-value function, which juxtaposes to the proposition p and to the time-moment $t \in T$ (T is a fixed set which we shall call "time-space" and it is arbitrarily oriented by the relation \preceq) the ordered pair:
\[(p(t), (v(p), (x, t)))\]

Remark 1. Let
\[T' = \{ (v(t), (x, t)) \mid t \in T \} \]

we shall define for given p and t the operators $p(t)$, $p(t)$, $p(t)$, $p(t)$, $p(t)$, for example:
\[p(t) = (p(t), (v(p), (x, t)))\]

for $x \in X$, $t \in T$, $0 \leq \alpha \leq 1$, and:

\[P(x, t) = (p(t), (v(p), (x, t)))\]

where $t \in T$ satisfies the conditions:
\[(0, \alpha) \cup (0, 1) = (0, 1) \cup (0, 1) \]

Remark 2. If there exist more than one such element of T', then t' is the maximal:

\[P(x, t) = (p(t), (v(p), (x, t)))\]

where $t' \in T'$ satisfies the conditions:

\[(0, \alpha) \cup (0, 1) = (0, 1) \cup (0, 1) \]

Remark 3. If there exist more than one such element of T', then t' is the minimal:

\[P(x, t) = (p(t), (v(p), (x, t)))\]

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
</tr>
<tr>
<td>6-7</td>
</tr>
<tr>
<td>8-9</td>
</tr>
<tr>
<td>10-13</td>
</tr>
<tr>
<td>14-18</td>
</tr>
<tr>
<td>19-24</td>
</tr>
<tr>
<td>25-30</td>
</tr>
<tr>
<td>31-36</td>
</tr>
<tr>
<td>37-42</td>
</tr>
<tr>
<td>43-48</td>
</tr>
<tr>
<td>49-54</td>
</tr>
<tr>
<td>55-60</td>
</tr>
<tr>
<td>61-66</td>
</tr>
<tr>
<td>67-72</td>
</tr>
</tbody>
</table>

Abstract Scientific Session of the Mathematical Foundations of Artificial Intelligence Seminar

Sofia, March 30, 1990

INSTITUTE FOR MICROSYSTEMS
MATHEMATICAL FOUNDATIONS OF ARTIFICIAL INTELLIGENCE SEMINAR
Sofia, 7-10 am, Sofia-181, Bulgaria

Cover page

Contents